Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Neurocrit Care ; 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2295077
2.
Neurology ; 98(3): e315-e325, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1993414

ABSTRACT

BACKGROUND AND OBJECTIVES: In patients with severe coronavirus disease 2019 (COVID-19), disorders of consciousness (DoC) have emerged as a serious complication. The prognosis and pathophysiology of COVID-DoC remain unclear, complicating decisions about continuing life-sustaining treatment. We describe the natural history of COVID-DoC and investigate its associated brain connectivity profile. METHODS: In a prospective longitudinal study, we screened consecutive patients with COVID-19 at our institution. We enrolled critically ill adult patients with a DoC unexplained by sedation or structural brain injury and who were planned to undergo a brain MRI. We performed resting-state fMRI and diffusion MRI to evaluate functional and structural connectivity compared to healthy controls and patients with DoC resulting from severe traumatic brain injury (TBI). We assessed the recovery of consciousness (command following) and functional outcomes (Glasgow Outcome Scale Extended [GOSE] and the Disability Rating Scale [DRS]) at hospital discharge and 3 and 6 months after discharge. We also explored whether clinical variables were associated with recovery from COVID-DoC. RESULTS: After screening 1,105 patients with COVID-19, we enrolled 12 with COVID-DoC. The median age was 63.5 years (interquartile range 55-76.3 years). After the exclusion of 1 patient who died shortly after enrollment, all of the remaining 11 patients recovered consciousness 0 to 25 days (median 7 [5-14.5] days) after the cessation of continuous IV sedation. At discharge, all surviving patients remained dependent: median GOSE score 3 (1-3) and median DRS score 23 (16-30). Ultimately, however, except for 2 patients with severe polyneuropathy, all returned home with normal cognition and minimal disability: at 3 months, median GOSE score 3 (3-3) and median DRS score 7 (5-13); at 6 months, median GOSE score 4 (4-5), median DRS score 3 (3-5). Ten patients with COVID-DoC underwent advanced neuroimaging; functional and structural brain connectivity in those with COVID-DoC was diminished compared to healthy controls, and structural connectivity was comparable to that in patients with severe TBI. DISCUSSION: Patients who survived invariably recovered consciousness after COVID-DoC. Although disability was common after hospitalization, functional status improved over the ensuing months. While future research is necessary, these prospective findings inform the prognosis and pathophysiology of COVID-DoC. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov identifier: NCT04476589.


Subject(s)
COVID-19 , Consciousness Disorders , Aged , Brain/diagnostic imaging , COVID-19/complications , Consciousness Disorders/diagnostic imaging , Consciousness Disorders/virology , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Middle Aged , Prospective Studies , Recovery of Function
3.
Ann Neurol ; 91(6): 740-755, 2022 06.
Article in English | MEDLINE | ID: covidwho-1729093

ABSTRACT

OBJECTIVE: The purpose of this study was to estimate the time to recovery of command-following and associations between hypoxemia with time to recovery of command-following. METHODS: In this multicenter, retrospective, cohort study during the initial surge of the United States' pandemic (March-July 2020) we estimate the time from intubation to recovery of command-following, using Kaplan Meier cumulative-incidence curves and Cox proportional hazard models. Patients were included if they were admitted to 1 of 3 hospitals because of severe coronavirus disease 2019 (COVID-19), required endotracheal intubation for at least 7 days, and experienced impairment of consciousness (Glasgow Coma Scale motor score <6). RESULTS: Five hundred seventy-one patients of the 795 patients recovered command-following. The median time to recovery of command-following was 30 days (95% confidence interval [CI] = 27-32 days). Median time to recovery of command-following increased by 16 days for patients with at least one episode of an arterial partial pressure of oxygen (PaO2 ) value ≤55 mmHg (p < 0.001), and 25% recovered ≥10 days after cessation of mechanical ventilation. The time to recovery of command-following  was associated with hypoxemia (PaO2 ≤55 mmHg hazard ratio [HR] = 0.56, 95% CI = 0.46-0.68; PaO2 ≤70 HR = 0.88, 95% CI = 0.85-0.91), and each additional day of hypoxemia decreased the likelihood of recovery, accounting for confounders including sedation. These findings were confirmed among patients without any imagining evidence of structural brain injury (n = 199), and in a non-overlapping second surge cohort (N = 427, October 2020 to April 2021). INTERPRETATION: Survivors of severe COVID-19 commonly recover consciousness weeks after cessation of mechanical ventilation. Long recovery periods are associated with more severe hypoxemia. This relationship is not explained by sedation or brain injury identified on clinical imaging and should inform decisions about life-sustaining therapies. ANN NEUROL 2022;91:740-755.


Subject(s)
Brain Injuries , COVID-19 , Brain Injuries/complications , COVID-19/complications , Cohort Studies , Humans , Hypoxia , Retrospective Studies , Unconsciousness/complications
5.
Neurocrit Care ; 36(2): 341-343, 2022 04.
Article in English | MEDLINE | ID: covidwho-1453885
6.
Brain ; 144(11): 3291-3310, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1341106

ABSTRACT

Neuroethical questions raised by recent advances in the diagnosis and treatment of disorders of consciousness are rapidly expanding, increasingly relevant and yet underexplored. The aim of this thematic review is to provide a clinically applicable framework for understanding the current taxonomy of disorders of consciousness and to propose an approach to identifying and critically evaluating actionable neuroethical issues that are frequently encountered in research and clinical care for this vulnerable population. Increased awareness of these issues and clarity about opportunities for optimizing ethically responsible care in this domain are especially timely given recent surges in critically ill patients with prolonged disorders of consciousness associated with coronavirus disease 2019 around the world. We begin with an overview of the field of neuroethics: what it is, its history and evolution in the context of biomedical ethics at large. We then explore nomenclature used in disorders of consciousness, covering categories proposed by the American Academy of Neurology, the American Congress of Rehabilitation Medicine and the National Institute on Disability, Independent Living and Rehabilitation Research, including definitions of terms such as coma, the vegetative state, unresponsive wakefulness syndrome, minimally conscious state, covert consciousness and the confusional state. We discuss why these definitions matter, and why there has been such evolution in this nosology over the years, from Jennett and Plum in 1972 to the Multi-Society Task Force in 1994, the Aspen Working Group in 2002 and the 2018 American and 2020 European Disorders of Consciousness guidelines. We then move to a discussion of clinical aspects of disorders of consciousness, the natural history of recovery and ethical issues that arise within the context of caring for people with disorders of consciousness. We conclude with a discussion of key challenges associated with assessing residual consciousness in disorders of consciousness, potential solutions and future directions, including integration of crucial disability rights perspectives.


Subject(s)
Bioethical Issues , Consciousness Disorders/classification , Neurology/ethics , COVID-19 , Consciousness Disorders/diagnosis , Humans , SARS-CoV-2
9.
J Neurol Sci ; 421: 117308, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1033825

ABSTRACT

We evaluated the incidence, distribution, and histopathologic correlates of microvascular brain lesions in patients with severe COVID-19. Sixteen consecutive patients admitted to the intensive care unit with severe COVID-19 undergoing brain MRI for evaluation of coma or neurologic deficits were retrospectively identified. Eleven patients had punctate susceptibility-weighted imaging (SWI) lesions in the subcortical and deep white matter, eight patients had >10 SWI lesions, and four patients had lesions involving the corpus callosum. The distribution of SWI lesions was similar to that seen in patients with hypoxic respiratory failure, sepsis, and disseminated intravascular coagulation. Brain autopsy in one patient revealed that SWI lesions corresponded to widespread microvascular injury, characterized by perivascular and parenchymal petechial hemorrhages and microscopic ischemic lesions. Collectively, these radiologic and histopathologic findings add to growing evidence that patients with severe COVID-19 are at risk for multifocal microvascular hemorrhagic and ischemic lesions in the subcortical and deep white matter.


Subject(s)
Brain Injuries/diagnostic imaging , COVID-19/diagnostic imaging , Magnetic Resonance Imaging/methods , Microvessels/diagnostic imaging , Severity of Illness Index , Brain/blood supply , Brain/diagnostic imaging , Brain Injuries/etiology , COVID-19/complications , Humans , Intensive Care Units/trends , Male , Microvessels/injuries , Middle Aged , Retrospective Studies
12.
Ann Neurol ; 88(4): 851-854, 2020 10.
Article in English | MEDLINE | ID: covidwho-625491

ABSTRACT

Many patients with severe coronavirus disease 2019 (COVID-19) remain unresponsive after surviving critical illness. Although several structural brain abnormalities have been described, their impact on brain function and implications for prognosis are unknown. Functional neuroimaging, which has prognostic significance, has yet to be explored in this population. Here we describe a patient with severe COVID-19 who, despite prolonged unresponsiveness and structural brain abnormalities, demonstrated intact functional network connectivity, and weeks later recovered the ability to follow commands. When prognosticating for survivors of severe COVID-19, clinicians should consider that brain networks may remain functionally intact despite structural injury and prolonged unresponsiveness. ANN NEUROL 2020;88:851-854.


Subject(s)
Brain/diagnostic imaging , Coma/diagnostic imaging , Coronavirus Infections/physiopathology , Persistent Vegetative State/diagnostic imaging , Pneumonia, Viral/physiopathology , Recovery of Function , Betacoronavirus , Brain/physiopathology , COVID-19 , Coma/physiopathology , Coronavirus Infections/therapy , Electroencephalography , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways , Pandemics , Persistent Vegetative State/physiopathology , Pneumonia, Viral/therapy , Prognosis , Renal Insufficiency/physiopathology , Respiration, Artificial , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Shock/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL